
Advanced  Algorithms  and  High-Performance  Testbed for Large-Scale Site 
Characterization  and Subsurface Target Detection  using 

Airborne  Ground  Penetrating  SAR 

Amir  Fijany,  James B. Collier, and  Ari Citak 
Jet  Propulsion Laboratory, California Institute of Technology 

MS 126-347,4800 Oak Grove Drive 
Pasadena,  CA 9 1 lo9 

Amir.Fijany@jpl.nasa.gov 
8 18-393-5342 

Abstract - A team of US  Army Corps of Engineers, Omaha 
District and Engineering and Support Center, Huntsville, Jet 
Propulsion Laboratory (JPL), Stanford Research Institute 
(SRI), and  Montgomery  Watson is currently in the process 
of planning and conducting the  largest ever survey at  the 
Former Buckley Field (60,000 acres), in Colorado, by using 
SRI airborne, ground penetrating, Synthetic Aperture Radar 
(SAR). The purpose of this survey is the detection of surface 
and subsurface Unexploded Ordnance (UXO) and in a 
broader sense the  site characterization for identification of 
contaminated as well as clear areas. In preparation for such a 
large-scale survey, JPL  has  been developing advanced 
algorithms and a high-performance testbed  for processing of 
massive amount of expected  SAR data from  this site. Two 
key requirements of  this  project are the accuracy (in  terms of 
UXO detection) and speed of SAR data processing. The  first 
key feature of  this  testbed is a large degree of  automation 
and a minimum degree of  the  need for human  perception in 
the processing to achieve an acceptable processing rate of 
several hundred acres per day. For accurate UXO detection, 
novel algorithms have  been developed and implemented. 
These algorithms analyze  dual  polarized (HH and VV) S A R  
data. They are  based on  the correlation of HH and VV SAR 
data and involve a rather large  set  of parameters for accurate 
detection of UXO.  For  each specific site, this  set  of 
parameters can be optimized by using  ground  truth data 
(i.e.,  known surface and subsurface UXOs). In this paper, 
we discuss these algorithms and their successful application 
for detection of surface and subsurface anti-tank mines by 
using a data set from Yuma proving Ground, AZ, acquired 
by SRI SAR. 
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ALGORITHM 

YUMA  SAR  DATA SET 

WORKS 

I .  INTRODUCTION 

Recently, much attention has  been  paid  to  land  mine 
problem as it represents a serious threat to civilian 
population in several parts of the  world. However, there 
exists another related and perhaps more widespread 
environmental problem which is the presence of the 
Unexploded Ordnance (UXO) in many countries and in 
particular in USA. There are currently over 9,OOO Formerly 
Used Defense Sites (FUDS) in continental USA, some of 
them  of  vast acreage, which  are  now in public or private 
ownership. Of the 9,000 FUDS, over 2,000 have been 
identified as having  the  potential for contamination by UXO 
and  thus require site remediation. 

A key  and challenging task in site remediation is  the 
detection of  the subsurface UXOs. This task  is currently 
performed by humans  walking  through  the site and  using 
detection devices such as magnetometer  and gradiometer. 
This is  not  only a dangerous activity, but  is also extremely 
time consuming, costly, and inefficient. In fact, it can cost 
anywhere  between $ 1 , 0 o O  and $20,000 per acre depending 
on  the anomaly and ordnance concentration, depth, and  field 
conditions such as heavy  brush  and steep terrain [ l ] .  Given 
the  time  and cost involved in remediation  of a large number 
of sites, some  of  them  of  vast acreage, novel technologies 
are needed to enable a rapid and cost-effective site survey 
and detection of subsurface UXO. 

Airborne, ground penetrating, SAR  has  the potential of an 
ideal technology for a rapid  and cost-effective site survey. 
However,  though it is  being  increasingly  used as an effective 
remote sensing technology, it has  not previously been 
validated as a viable  tool  for subsurface UXO detection. In 
fact, previous experiments at  Jefferson Proving Ground 
seemed to indicate that  this  technology  is  not suitable for 
subsurface UXO detection [ I ] .  There are two main 
challenges in using airborne, ground penetrating, SAR data 
for UXO detection [2] (see also Sec. 2 ): 

1 .  Highly  negative signal-to-clutter environment, and 
2. Low-resolution measurement, due to  the small size of the 

class of UXOs of interest with respect to the  SAR 
wavelength  rcsulting in  a subpixcl target. 

In 1995. US Army Corps of Engineers. Enginccring and 
Support Ccntcr. Huntsville (CEHNC). JPL, and  SRI 
conductcd thc  largcst  cvcr airhornc. ground pcnctrating 
SAR survcy lor  UXO dctcction and sitc charactcrization ;I( a 
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highly  conraminatcd FUDS. the former  Camp  Croft  Training 
Facility i n  Sparranburg, SC [2,31. This was a first 
operational validation of a remote sensing tcchnology that 
had nevcr been applied for 3 large scale (> 19.OOO acres) 
UXO site remediation  activity in thc past. Not only was  the 
Camp Croft site of  vast acreage but also  the extent of OE 
contamination was undocumented and unknown. In addition, 
it presented significant complexity in foliage clutter and 
terrain relief. 

The  JPL team,  for  the  first  time, developed effective and 
advanced post-processing algorithms for detection of 
subpixel target in a highly  negative signal-to-clutter 
environment, using  SAR data from Camp Croft [2]. These 
algorithms were  first successfully validated against ground 
truth data (found UXOs by walk-through  of  the site) 
provided by the CEHNC. Upon  this successful validation, 
they  were  then  applied  to a survey of a small area ( 1 0 0  
acres) of Camp Croft. Subsequent inspection of this area by 
CEHNC clearly validated the effectiveness , of JPL 
algorithms for  both detection of subsurface UXOs and 
identification of clear areas [4]. JPL's successful results of 
this challenging and real-life case study  for the first  time 
clearly established the airborne, ground penetrating, SAR as 
a viable remote sensing tool for a rapid and cost-effective 
survey of  large sites. 

7 .  YUMA SAR  DATA SET 

In July and October 1995. the MIT Lincoln Laboratory and 
Army Research  Laboratory (ARL) conducted a ground 
penetrating  radar experimcnt at  the U.S. Yuma Proving 
Ground in Arizona [SI.  Three radar  systems, the SRI Folpen 
111, the ARL  BoomSAR, and  the  Navy P-3 collected 
polarimetric data from  both  targets  and clutter. Some of  the 
targets deployments included a mine field, wire/pipes, and 
missile clones. In this paper, we only consider the data 
collected by SRI airborne Folpen 111 SAR over the deployed 
minefield. 

Figure 1 shows an aerial photography  of  the Philips Drop 
Zone  at  Yuma  Proving  Ground  wherein  the rectangle 
indicates  the  location of the  deployed  minefield. Figure 2 
shows the pattern of deployed mines and their  burial depth. 
Note  that at the first, second, third, and sixth  row  the M20 
anti-tank mines  (shown in Figs. 3-4) are deployed. The row 
4 contains an unknown  type of plastic mine  which cannot be 
detected by S A R .  Also,  the  row 5 includes smaller M12 
anti-tank  mines  which, due to their small size, are not 
detectable. In  the following, we only concentrate on the 
detection  of M20 anti-tank mines.  Note that, given their size 
(Fig. 3) and SRI SAR 80cmx80cm resolution, the M20 anti- 
tank mines represent subpixel targets. 

As a result of successful validation and application on a Figures 5 and 6 show the VV and HH magnitude 

(representing some of the current site remediation projects at left  and lower right comers of these  images indicate the 

validation of JPL's technology. Former Buckley Field, identify  and register the location of  the  minefield. Also, 

6())0() acre FUDS located on the high plains minefield in both  images are due to  the presence of two 100- 
outside Denver. Ordnance remediation at  this site is  of  major meter electrical wires  with a diameter of 2.7 nun; one laid on 
and critical importance because of increasing urban the ground surface and the other buried at 30cm  below  the 
development in the area. In preparation for such a large- surface. As  can  be seen, only a very  few of the M20 anti- 
scale survey, JpL has been developing advanced algorithms tank  mines  can be clearly distinguished in these images. In 

amount of expected SAR data from this site. Two key signal-to-clutter environment usually encountered in SAR 
requirements of this project are the  accuracy (in terms of data analysis. 
UXO detection) and speed of SAR data processing. The first 
key feature of this  testbed  is a large degree of automation Figures 7 and 8 show  the VV and HH phase polarization of 
and a minimum degree of  the  need for human perception in radar  image. The only noticeable information in these two 

several hundred acres per day. For accurate UXO detection, the wires. 
novel algorithms have been developed and  implemented. 
These algorithms analyze  dual polarized (HH and VV) SAR 3. JPL AUTOMATIC TARGET 
data. They are  based  on  the correlation of HH and VV  SAR DETECTION ALGORITHM 
data and  involve a rather large set of parameters for accurate 
detection of UXO. For each specific site, this  set of The techniques repofled in this  Paper are based  on finding 
parameters can be optimized by using  ground  truth data (i.e.,  local  maxima in SAR  images. The assumption is that a 
known surface and subsurface UXOs). In this paper, we detectable target  anomaly will  be associated with one or 
discuss these algorithms and their successful application for more of these local  maxima. In general, an  image  will  have 
detection of surface and subsurface anti-tank mines by using a great many local  maxima  which do not corespond 10 
a data set from  Yuma  proving Ground, AZ, acquired by SRI  target anomalies. Not surprisingly. Some of these  local 
SAR. maxima seem to be much better candidates than others. The 

challenge is to find effective algorithms that  down sclcct a 
local  maximum  which  is a poor candidate and thcrcby 
climinatc lalsc positives. Our cxpcricnce sccms to indicate 
thar there is  no single clfectivc algorithm for this. However, 
i t  docs appcar thar ;I scrics o f  down sclccrion alporihns, 

small-sca]e, the  CEHNC has considered several sites polarization Of radar image. The bright 'Pots at the upper 

CEHNC) for a large-scale application, demonstration, and ground reflectors in this  experiment to better 

Colorado, is  the first selected application site. This is a the two bright and long lines going across the 

and a  high-perfomance testbed for processing of massive fact* these images represent the typica1 Of negative 

the processing to achieve an acceptable processing rate of  images are the phase shift 'Om long i.e., 



each hy Itself  marginally effective, can together he 
moderately cffcctive in selecting good candidatcs from 
among all  the local  maxima. 

3.1. Finding Al l  Local Maxima ir l  an Image 

For convenience, an image is always  treated  to be a rcal- 
valued  function f on the ZxZ plane of integers. A local 
maxima is  any  maximal connected subregion R of ZxZ for 
which f assumes a constant value M and f(p)cM for  any 
pixel p adjacent to R. For instance, the  image f may assume 
the constant value 200 on a 3x3 square of  pixels and assume 
values less than 200 at any of  the 16 adjacent pixels 
surrounding this square. This 3x3 square is  then a local 
maxima. In finding local maxima, Z is set  to  3,  that  is, every 
pixel  is compared with its immediate  neighbor in a recursive 
fashion. Most  local  maxima  consist  of a single pixel. 
However, adjacent pixels having  the  same  intensity will 
result in local maximum  that  is  more than one pixel. 

3.2. Removal of Large  Objects 

This kernel  of the algorithm classifies local  maxima in terms 
of their size and shape by determining the properties of  the 
objects. This is done in terms  of diameter from one end to 
the other end  of  any object based on the connectivity of  the 
higher intensity values. The assumption is  that if a local 
maximum corresponds to a peak  having a diameter of a 
given size or larger, then it probably identifies to some 
feature which  is too large  to be considered as a target 
anomaly. The subregions that  make  up  large objects are 
tagged  and  the corresponding pixels  are not taken into 
account in the later calculations. 

The large object removal kernel  employs  four parameters 
two  for each polarization: a threshold  value  for  HH 
polarization (THLoR ), a threshold  value  for VV polarization 
(TVLOR), a diameter value for HH polarization (DH ), and a 
diameter value for VV polarization (Dv ). The diameter 
values are used to classify the size of objects . It should be 
emphasized that this kernel  is compute intensive as it 
requires the analysis of every pixel in connection with its 
neighboring pixels. Therefore, the  threshold  values are used 
to reduce the scope of computation. Note, also, that  the 
signature of large objects and in particular surface objects 
are usually brighter, Le.,  they  have a higher  pixel  value. 
Examples of  this  phenomena are the  bright signature of 
electrical wires  and  ground reflectors in Figs. 5 and 6.  Note 
that  these  four independent parameters need to be optimized 
for each data set since a number of site dependent factors 
(e.g., vegetation, roads, slopes, pipes, power cables, fences, 
etc.) can influence their optimal  values. 

3.3. Local  Normalization 

This kernel performs a local analysis of  the retained  local 
maximum. It applies the  following procedures for  every 
retained  local  maximum in both HH and VV polarizcd 
images by setting a square window  size  of (3n+ 1 ) by (2n+ I ) 
centered at  the local  maxima. 

Compurc thc  local  ;Ivcrasc 01'  thc  window: 

avg = the  sum of all pixels in the  window / (2n+ I ) 
Compute the local standard deviation o f  the window: 
sigma = the  sum  of SQRT of every pixel - avg 
Compute the deviation from  the local average of  the 
local  maxima: 
deviation = (locmax - avg) / sigma 

The calculated deviation for each pixel in the  window 
becomes  its new magnitude  and  is  used in the subsequent 
calculations. Note  that the window size, which  is determined 
by n,  is one of  the parameters that  needs to be optimized for 
every data set. 

3.4. Thresholding 

Once  the new magnitudes are assigned to the pixels as 
described above, this kernel is  used to eliminate a major 
portions  of  false positives by excluding all local maxima 
whose  new  magnitude  (i.e., deviation) is below a certain 
level. This thresholding process is performed  on  both 
normalized HH and W polarized images. However, as 
stated before, targets and clutter can  manifest themselves 
quite differently in each polarization. Therefore, two 
independent parameters, TH for HH polarization and Tv for 
VV polarization, are used as threshold  values.  Note  that  the 
two  independent parameters, TH and Tv, need to be 
optimized  for  every data set. 

3.5. Correlating  Multiple  Images 

This kernel  takes  two different SAR images (HH and VV 
polarized  magnitude) of exactly the same region  and  finds 
those  retained  local  maxima  that are common to both 
images. This process is referred as correlating the local 
maxima. 

The assumption  is  that if there are two  retained  local 
maxima, one in each image, which are approximately in the 
same location, then this location is  much  more  likely to 
correspond to a target anomaly and  not to a false positive. 
Note  that  an  exact  match  between  two images of  the same 
area is  unlikely due to a number  of inherent factors including 
the way HH and VV polarized data are acquired. That is, the 
signature of  an object might appear in two images with  some 
pixel  shift.  Because  an exact match  is unlikely, a parameter 
is  introduced to take into account the  pixel shift. Using  this 
parameter,  called pixel shifr (PS), the  two  images  are  then 
expanded and superimposed so that  nearby  local  maxima 
overlap. Final thresholding (C*) is  then applied on  the 
combined  image. The resulting image  is a set of  local 
maxima  that  represent likely targets. Again, the parameters, 
PS and Clh, need  to be optimized for  each data set. 

3.6. Parameters  Optimization 

The algorithm described above utilizes eight independent 
parameters (THLOR, TVLOR,  DH, Dv. TH,  Tv. PS. and C d  to 
achieve the  best possible  result in  target detection. Using a 
set of' ground truth data (i.e., known UXOs) for  any  given 
sitc. these  paramcters  can then be optimized to  cxtract 
information as much  as possible for analysis of  thc  whole 
sitc. The optimization process is performed by running all 



possible values of  the parameters and  scoring the results 
against the ground truth data. 

For Yuma data set, a target  file consisting of all  the mines o n  
the first. second, third. and sixth  rows  has been generated. 
Appropriate range of values  has then  been identified  for 
each parameter. The algorithm was  then  run  with all 
possible cases covering the  range of values of parameters. 
This optimization process, due to  its  inherent combinatorial 
nature, is extremely compute-intensive. In fact, for Yuma 
data set, i t  involved  on the order of 50,000 cases to 
determine the best combination of  parameters.  On a typical 
workstation, this optimization might  have  taken  weeks to be 
completed. In order to achieve a fast  turnaround  time a 
highly  parallel architecture, Linux-based BEOWULF with 
32 processor nodes, was used. By exploiting the computing 
power of  this architecture and the data parallel  nature of the 
optimization (i.e., each processor can independently run a 
subset of cases), a very  fast turnaround time  of less than a 
day was achieved. 

4. RESULTS OF MINE DETECTION 

USING  YUMA S A R  DATA SET 

In this section, we discuss the results of optimized algorithm 
for detection of anti-tank mines by using  the  Yuma Proving 
Ground S A R  data set. Figures 9 shows the resulting image 
from  the application of our algorithm to the  minefield 
without applying Large Objects Removal  kernel.  Although, 
a significant reduction in clutter has been achieved, the large 
objects (i.e., electrical wires  and  ground reflectors) are still 
present in the image. Figure 10 shows the results with Large 
Objects Removal. As can be seen in Fig. 10, the large 
objects have  been successfully eliminated from  the  image. 

Figure 1 1  shows the pattern of anti-tank mines  laid on  the 
first row. Figure 12 shows  the pattern of resulting anomalies 
(both targets and  false positives). Figure 13 shows the 
impact of only one parameter, the  final  parameter Cth, while 
keeping all other parameters fixed at their  optimum  values, 
on  the detection rate of  the algorithm for first row. The key 
point is that, using our parameterization, it is possible to 
optimize the algorithm so that  maximum  target detection 
with  minimum false positives and  misses  can be achieved. 
Note that, as our experiments with  this data set have  shown, 
such  target detection rate cannot be achieved by just 
applying a simple thresholding as proposed in [5]. 

Figure 14 shows the  pattern of anti-tank  mines  laid on the 
third  row.  Figure 15 shows  the pattern of  resulting anomalies 
(both targets  and  false positives). Figure 16 shows the 
impact of only one parameter, the  final  parameter  Ch.  while 
keeping all  other parameters fixed  at  their  optimum  values, 
on  the detection rate of  the algorithm for  the  third  row.  As 
can he seen  and  compared with the  first  row, a much better 
result in tcrms o f  targct detection with minimum false 
positives and  missch has hccn achicvcd. This better  result 
can hc  a!trihutcd 1 0  the  fact that the signature of  the 

electrical wires docs not strongly intcrfcrc with the  third 
row. Similarly, the signature of the electrical wires does not 
interfere with the sixth row leading to comparahle results as 
those  of  the third row.  Figures  17- I9 show  the  results for 
the sixth row. 

5. CONCLUSION 

In this paper we presented a novel algorithm for detection of 
subpixel targets in highly negative signal-to-clutter ratio 
environment by using airborne, ground penetrating SAR 
data. The fact  that airborne, ground penetrating, SAR has 
not previously  been successful in subsurface UXO detection 
can be mainly  attributed to the  lack of adequate processing 
technique. Traditionally, simple thresholding is applied to 
either HH or VV polarized data. The first drawback of this 
approach is  that, in a negative signal-to-clutter ratio 
environment, only the strongest targets with a large number 
of false positives can be detected. The second drawback is 
that of using  only one image is that it does not allow the 
extraction of  maximum information possible by multiple 
images.  In contrast, our parameterized technique including 
correlation, allows exploitation of dual polarized data with a 
much better optimization for target detection with  minimum 
false positives and misses. 

We are currently improving and enhancing the technique 
discussed in this paper. In particular, there has  not  yet  been 
any proposed technique for exploitation of  information 
provided by the  SAR  phase  images. We strongly believe that 
phase  images  can be effective in improving our results. 
However, the  challenge  is in the development of adequate 
techniques for extraction of information from phase images. 
We are currently investigating new techniques for 
processing of phase  images by using  wavelet transforms. 
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Figure 1: Aerial  photo of Philips  Drop  Zone at Yuma Proving Ground,  Arizona. The rectangle in 
the upper  right  corner  denote  the  minefield. 
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Figure 3: M20 Anti-tank  mine 
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Figure 7: V V  Phase  Polarization of the radar image o f  the  minefield. 





Figure 11: The pattern of mines laid out on the first row in the  minefield. 

Figure 12: Signature of M20 mines  at  a  depth  of 6 inches  below  surface  resulting from the 
application of post  processing  algorithm  on  the  first row. 

UXO Detection  Algorithm  Results for Row 1 

t Hits 

Figure 13: Detection Rare vs. Combined Image Threshold. Notice how number of False Positives 
and Hits decrcasc and Misses  increase as threshold values increase. The optimal  value 
is u'hcn H i t 4  is ;I[ tn;tsinlLII11 and False Po\itivc\ ;~ncf  Misses arc a t  mininlum  which 
lntcrsccl a t  a r o u n d  cxmhincd  thrcshold \,aluc of 173.0. 



Figure 14: The pattern of mines  laid out on the third row in the  minefield. 

Figure 15: Signature of M20 mines at a depth of 6 inches  below  surface  resulting from the 
application of post  processing  algorithm  on  the  third  row. 

UXO Detection  Algorithm Results for Row 3 

_"___l_"- , 7  

Figure 16: Detection  Rate vs. Combined Image Threshold.  Notice how number of False  Positives 
and Hits decrease and Misses  increase as rhreshold values increase. The optimal  value 
is \\,hen Hits i.4 ;II In;tsiI11urn and False Positivcx ; ~ n c t  Misscs arc at minimum  which 
intcrhcct a 1  ; 1 r o u n d  cx)lllhincd threshold v;rluc 01. 173.0. 
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Figure 17: The pattern of mines laid out on the sixth row in the  minefield. 

Figure 18: Signature of M20 mines  just below  surface  resulting from the  application of post 
processing  algorithm on the  sixth row. 

UXO Detection  Results for Row 6 


